Posts Tagged ‘Radioaktivität’

Malaysia/BRD: Für “saubere” Energie

Samstag, September 14th, 2013

“Seltene Erden – Fluch oder Segen für Malaysia?

Von Jade Lee

Am Sonntagnachmittag des 25. November 2012 hatten sich rund 20.000 Menschen auf dem Unabhängigkeitsplatz in Kuala Lumpur versammelt und missachteten die polizeiliche Warnung, dass diese Versammlung illegal sei. Die Menschenmenge saß friedlich im Regen vor der Polizeibarrikade und rief leidenschaftlich »Stop Lynas«. Viele Demonstrant/Innen trugen grüne T-Shirts, auf denen Umweltschutzslogans gedruckt waren. Sie hatten sich dort eingefunden, um die siebzig Läufer/Innen zu empfangen, die einen 13-tägigen Marsch über dreihundert Kilometer, der in Kuantan an der Ostküste der Malaiischen Halbinsel begann, in der Hauptstadt beendeten. Mit diesem Marsch drückten sie ihren Protest gegen die behördliche Bewilligung einer temporären Betriebslizenz für die weltweit größte Seltene Erden-Raffinerie aus. Bereits seit mehr als eineinhalb Jahren führen lokale Bewohner/Innen gemeinsam mit Aktivist/Innen eine Kampagne gegen die Seltene-Erden-Produktionsstätte des australischen Minenunternehmens Lynas Corporation (kurz Lynas) in der Nähe Kuantans. Lynas verschifft bereits Erzkonzentrat von seinem Bergbaugebiet am Mount Weld, das sich im Westen Australiens in der Nähe von Laverton befindet, zur finalen Produktionsphase in den rund 6.000 Kilometer entfernt gelegenen Hafen Kuantans zur dort ansässigen Raffinerie.

Das neue »grüne« Gold?

Für viele digitale und elektronische Bauteile bedarf es Oxide der Seltenen Erden. So sind sie auch in Hybrid- und Elektroautos, Windturbinen, Solarzellenpaletten, Energiesparlampen und Raketen enthalten. Im Juli 2011 hat der Technologiekonzern Siemens »eine Absichtserklärung zur Gründung eines Joint Ventures für die Produktion Seltener-Erden-Magneten unterzeichnet«. Laut Siemens »bedarf es für die Produktion von energieeffizienten Antriebsanwendungen und Windturbinengeneratoren diese Art von Magneten. Lynas wird für das Joint Venture Rohstoffe – vorwiegend Metalle, die Neodym enthalten – im Rahmen eines Langzeit-Liefervertrages bereitstellen«. Wenn dieses Joint Venture zustande kommt, wird Siemens mit 55 Prozent der Anteile der Mehrheitseigner sein. Lynas wird die restlichen 45 Prozent besitzen.1

Auch der deutsche Konzern BASF unterzeichnete trotz der Proteste im September 2011 einen Langzeitvertrag mit Lynas:

    »Gemäß den Vertragsbedingungen wird Lynas BASF mit einer festgelegten Jahresmenge Lanthan beliefern, welches der wesentliche Rohstoff bei der Produktion von BASFs Fluid Catalytic Cracking (FCC)-Raffineriekatalysatoren und bestimmter chemischer Katalysatorenerzeugnisse ist. Lynas wird diese Mengen durch das Lynas’ Rare Earth Separation Plant in Kuantan (Malaysia) bereitstellen, welches voraussichtlich im vierten Quartal 2011 mit 11.000 Metertonnen Gesamtjahresproduktionskapazität in Betrieb geht und im Jahr 2012 diese Menge auf 22.000 Metertonnen erhöhen wird. Zusätzliche Vertragseinzelheiten sind vertraulich.«

»Dieser Vertrag mit Lynas Corporation ist für unser Geschäft mit Chemie- und Raffineriekatalysatoren sowie für unsere Kunden ein bedeutender Schritt nach vorn«, sagt Dr. Hans-Peter Neumann, Senior-Vizepräsident von BASF Process Catalysts and Technologies. »Er ermöglicht es uns, unsere Lieferantenbasis für Seltene Erden weiter zu diversifizieren und zudem langfristig einen wesentlichen Teil des Lanthan-Bedarfs zu sichern.«2

 In Deutschland sind sowohl Siemens als auch BASF an hohe Umwelt- und Sozialstandards gebunden. Außerdem möchten diese globalen Großkonzerne gerne als ethisch korrekt handelnde und nachhaltige Unternehmen wahrgenommen werden. Hierzu konträr steht der starke lokale Protest gegen die Seltene Erden-Aufbereitung in Malaysia. Welche Konsequenzen ziehen die deutschen Unternehmen aus diesen Kontroversen?

Die versteckten Kosten der Extraktion Seltener Erden

Seltene Erden kommen relativ häufig auf der Welt vor. Erzkörper werden oft mit radioaktivem Thorium und Uranium gefunden. Die Verarbeitung Seltener Erden zu Oxiden ist allerdings mit hohen Gefahren verbunden, da hierbei hohe Mengen ätzender Säuren bei sehr hoher Temperatur zugegeben werden müssen, wodurch giftige Dämpfe, große Mengen Giftabfall und CO2 sowie andere Treibhausgase entstehen (…).”

Anmerkungen

1 Zu finden unter: < www.siemens.com/press/en/ pressrelease/?press=/en/pressrelease/2011/ industry/i20110742.htm>.

2 Weiterführende Informationen zu diesem Vertrag sind nachzulesen unter: < www.basf.com/group/corporate/ en/news-and-media-relations/news-releases/news- releases-usa/P-10-0076>.”

Weiterlesen …

 

(Quelle: Asienhaus.de)

Japan: No Sushi, please!

Montag, März 18th, 2013

“Record Radiation Found in Fukushima Fish

- By Lauren McCauley, staff writer

The port of the Fukushima No. 1 nuclear power plant where the highly radioactive fish was caught. (Photo: Asahi Shimbun)

The port of the Fukushima No. 1 nuclear power plant where the highly radioactive fish was caught. (Photo: Asahi Shimbun)

A fish with record levels of radioactive cesium was caught in the waters outside the Fukushima Daiichi Nuclear Power Station, officials announced Friday.

Tokyo Electric Power Co. (TEPCO) said they detected 740,000 becquerels per kilogram of radioactive cesium in a greenling fish caught the port adjacent to the nuclear site, Kyodo News reports. The amount is 7,400 times the state-set limit deemed safe for human consumption.

According to TEPCO, is the highest yet recorded in its sampling surveys of marine life since the March 2011 disaster.

_____________________

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License “

 

(Quelle: Common Dreams.org)

Global: Strahlendes Loch im Himmel

Montag, Juli 30th, 2012

“NASA’s Dangerous Alliance With the Nuclear Industry

Nukes on Mars

by KARL GROSSMAN

World Nuclear News, the information arm of the World Nuclear Association which seeks to boost the use of atomic energy, last week heralded a NASA Mars rover slated to land on Mars on Monday, the first Mars rover fueled with plutonium.

“A new era of space exploration is dawning through the application of nuclear energy for rovers on Mars and the Moon, power generation at future bases on the surfaces of both and soon for rockets that enable interplanetary travel,” began a dispatch from World Nuclear News. It was headed: “Nuclear ‘a stepping stone’ to space exploration.”

In fact, in space as on Earth there are safe, clean alternatives to nuclear power. Indeed, right now a NASA space probe energized by solar energy is on its way to Jupiter, a mission which for years NASA claimed could not be accomplished without nuclear power providing onboard electricity. Solar propulsion of spacecraft has begun. And also, scientists, including those at NASA, have been working on using solar energy and other safe power sources for human colonies on Mars and the Moon.

The World Nuclear Association describes itself as “representing the people and organizations of the global nuclear profession.” World Nuclear News says it “is supported administratively and with technical advice by the World Nuclear Association and is based within its London Secretariat.”

Its July 27th dispatch notes that the Mars rover that NASA calls Curiosity and intends to land on August 6th, is “powered by a large radioisotope thermal generator instead of solar cells” as previous NASA Mars rovers had been. It is fueled with 10.6 pounds of plutonium.

“Next year,” said World Nuclear News, “China is to launch a rover for the Moon” that also will be “powered by a nuclear battery.” And “most significant of all” in terms of nuclear power in space, continued World Nuclear News, “could be the Russian project for a ‘megawatt-class’ nuclear-powered rocket.” It cites Anatoly Koroteev, chief of Russia’s Keldysh Research Centre, as saying the system being developed could provide “thrust…20 times that of current chemical rockets, enabling heavier craft with greater capabilities to travel further and faster than ever before.” There would be a “launch in 2018.”

The problem—a huge one and not mentioned whatsoever by World Nuclear News—involves accidents with space nuclear power systems releasing radioactivity impacting on people and other life on Earth. That has already happened. With more space nuclear operations, more atomic mishaps would be ahead.

NASA, before last November’s launch of Curiosity, acknowledged that if the rocket lofting it exploded at launch in Florida, plutonium could be released affecting an area as far as 62 miles away—highly-populated and including Orlando. Further, if the rocket didn’t break out of the Earth’s gravitational field, it and the rover would fall back into the atmosphere and break up, potentially releasing plutonium over a massive area. In its Final Environmental Impact Statement for the mission, NASA said in this situation plutonium could impact on “Earth surfaces between approximately 28-degrees north latitude and 28-degrees south latitude.” That includes Central America and much of South America, Asia, Africa and Australia.

The EIS said the costs of decontamination of plutonium in areas would be $267 million for each square mile of farmland, $478 million for each square mile of forests and $1.5 billion for each square mile of “mixed-use urban areas.” The Curiosity mission itself, because of $900 million in cost overruns, now has a price of $2.5 billion.

NASA set the odds very low for a plutonium release for Curiosity. The EIS said “overall” on the mission, the likelihood of plutonium being released was 1-in-220.

Bruce Gagnon, coordinator of the Global Network Against Weapons & Nuclear Power in Space , for more than 20 years the leading opposition group to space nuclear missions, declared that “NASA sadly appears committed to maintaining its dangerous alliance with the nuclear industry. Both entities view space as a new market for the deadly plutonium fuel…Have we not learned anything from Chernobyl and Fukushima? We don’t need to be launching nukes into space. It’s not a gamble we can afford to take.”

Plutonium has long been described as the most lethal radioactive substance. And the plutonium isotope used in the space nuclear program, and on the Curiosity rover, is significantly more radioactive than the type of plutonium used as fuel in nuclear weapons or built up as a waste product in nuclear power plants. It is Plutonium-238 as distinct from Plutonium-239. Plutonium-238 has a far shorter half-life–87.8 years compared to Plutonium-239 with a half-life of 24,500 years. An isotope’s half-life is the period in which half of its radioactivity is expended.

Dr. Arjun Makhijani, a nuclear physicist and president of the Institute for Energy and Environmental Research, explains that Plutonium-238 “is about 270 times more radioactive than Plutonium-239 per unit of weight.” Thus in radioactivity, the 10.6 pounds of Plutonium-238 being used on Curiosity is the equivalent of 2,862 pounds of Plutonium-239. The atomic bomb dropped on Nagasaki used 15 pounds of Plutonium-239.

The far shorter half-life of Plutonium-238 compared to Plutonium-239 results in it being extremely hot. This heat is translated in a radioisotope thermoelectric generator into electricity.

The pathway of greatest health concern for plutonium is breathing in a particle leading to lung cancer. A millionth of a gram of plutonium can be a fatal dose. The EIS for Curiosity speaks of particles that would be “transported to and remain in the trachea, bronchi, or deep lung regions.” The particles “would continuously irradiate lung tissue.”

There hasn’t been an accident on the Curiosity mission. But the EIS acknowledged that there have been mishaps previously—in this spaceborne game of nuclear Russian roulette. Of the 26 earlier U.S. space missions that have used plutonium listed in the EIS, three underwent accidents, it admitted. The worst occurred in 1964 and involved, it noted, the SNAP-9A plutonium system aboard a satellite that failed to achieve orbit and dropped to Earth, disintegrating as it fell. The 2.1 pounds of Plutonium-238 fuel onboard dispersed widely over the Earth. Dr. John Gofman, professor of medical physics at the University of California at Berkeley, long linked this accident to an increase in global lung cancer. With the SNAP-9A accident, NASA switched to solar energy on satellites. Now all satellites and the International Space Station are solar powered.

The worst accident of several involving a Soviet or Russian nuclear space systems was the fall from orbit in 1978 of the Cosmos 954 satellite powered by a nuclear reactor. It also broke up in the atmosphere as it fell, spreading radioactive debris over 77,000 square miles of the Northwest Territories of Canada.

In 1996, the Russian Mars 96 space probe, energized with a half-pound of Plutonium-238 fuel, failed to break out of the Earth’s gravity and came down—as a fireball—over northern Chile. There was fall-out in Chile and neighboring Bolivia.

Initiatives in recent years to power spacecraft safely and cleanly include the launch by NASA last August 8th of a solar-powered space probe it calls Juno to Jupiter. NASA’s Juno website currently reports: “The spacecraft is in excellent health and is operating nominally.” It is flying at 35,200 miles per hour and is to reach Jupiter in 2016. Even at Jupiter, “nearly 500 million miles from the Sun,” notes NASA, its solar panels will be providing electricity. Waves

Solar power has also begun to be utilized to propel spacecraft through the friction-less vacuum of space. The Japan Aerospace Exploration Agency in 2010 launched what it termed a “space yacht” called Ikaros which got propulsion from the pressure on its large sails from ionizing particles emitted by the Sun. The sails also feature “thin-film solar cells to generate electricity and creating,” said Yuichi Tsuda of the agency, “a hybrid technology of electricity and pressure.”

As to power for colonies on Mars and the Moon, on Mars, not only the sun is considered as a power source but also energy from the Martian winds. And, on the Moon, as The Daily Galaxy has reported: “NASA is eying the Moon’s south polar region as a possible site for future outposts. The location has many advantages; for one thing, there is evidence of water frozen in deep dark south polar craters. Water can be split into oxygen to breathe and hydrogen to burn as rocket fuel—or astronauts could simply drink it. NASA’s lunar architects are also looking for what they call ‘peaks of eternal light’—polar mountains where the sun never sets, which might be a perfect settings for a solar power station.”

Still, the pressure by promoters of nuclear energy on NASA and space agencies around the world to use atomic energy in space is intense—as is the drive of nuclear promoters on governments and the public for atomic energy on Earth.

Critically, nuclear power systems for space use must be fabricated on Earth—with all the dangers that involves, and launched from Earth—with all the dangers that involves (1 out of 100 rockets destruct on launch), and are subject to falling back to Earth and raining deadly radioactivity on human beings and other life on this planet.

Karl Grossman, professor of journalism at the State University of New York/College of New York, is the author of the book, The Wrong Stuff: The Space’s Program’s Nuclear Threat to Our Planet. Grossman is an associate of the media watch group Fairness and Accuracy in Reporting (FAIR). He is a contributor to Hopeless: Barack Obama and the Politics of Illusion.”

 

(Quelle: Counterpunch.)

Kasachstan: Willkommen in Mailuu-Suu

Dienstag, Juli 3rd, 2012

“Filtering Radiation Out of Water in Kyrgyzstan’s Schools 

Recent news reports that fish caught off the coast of Southern California contained radiation from Japan’s damaged Fukushima nuclear plant illustrates the great distances that some toxic substances can travel.

If radioactive particles (albeit small doses not enough to cause health concerns) can journey some 6,000 miles across the ocean, imagine what the town of Mailuu-Suu is like? When local children turn on the tap in their schools, they get water highly contaminated with radiation.

That is because Mailuu-Suu, in Kyrgyzstan, is located downstream from an old uranium mine with piles of toxic radioactive waste left exposed to the elements. Here, the potent pollutant only needs to travel a few miles to reach the town. Mailuu-Suu was on Blacksmith’s first-ever list of world’s worst polluted places. For decades, piles of radioactive waste in Mailuu-Suu have been slowly leaching into the ground, contaminating the land and water, and sickening its 20,000 residents.

Moreover, with each earthquake or heavy rain, there is a danger that a catastrophic landslide will block the river next to the dumpsites, cause a flood, and spread radiation throughout large parts of Kygryzstan, Tajikistan and Uzbekistan. Data collected over 17 years show a clear correlation between cancer and congenital diseases with the level of life-threatening pollution in the town.

While the World Bank works on a long-term plan to protect the dumpsites from flooding, Blacksmith is reducing the risks to the most vulnerable residents by placing water filters in the town’s hospital and schools. The cartridge in each filter is designed to remove toxins for three years. However in Mailuu-Suu, the extraordinary level of contamination renders the cartridges useless in just nine months.

This year, Blacksmith is returning to install filters in three additional schools and replace cartridges in older filters. Since 2008 when the program began, levels of radioactive elements in the water have decreased by between 48% and 65% in the hospital and schools where filters were installed.”

 

(Quelle: Blacksmith Institute.)

Japan: Mahlzeit!

Donnerstag, Mai 3rd, 2012

“Blueberry Jam from Poland with 220 Bq/kg of Radioactive Cesium, 26 Years After Chernobyl

The food retailer Meiji-ya was about to import blueberry jam from Europe, but the sample test found radioactive cesium exceeding the new safety limit of 100 becquerels/kg. Blueberries were grown in Poland.

From Chunichi Shinbun (5/1/2012):

食品小売りの明治屋(東ä都ä央区)が4月にオーストリアの業者から輸入しようとしたブルーベリージャム3個から、放射性セシウムの新基準値を超える1キログラム当たり140~220ベクレルが検出され、厚生労働省が荷の積み戻しなどを指示していた。

140 to 220 becquerels/kg of radioactive cesium was detected in the three jars of blueberry jam that food retailer Maiji-ya (Chuo-ku, Tokyo) was about to import from an Austrian distributor in April. The Ministry of Health and Welfare ordered the company to send back the shipment.

 輸入時の検査で判明した。商品は流通していない。輸入食品で新基準値を超えたのは

It was revealed by the import inspection, and the products are not sold in the market. This was the first time that imported food exceeded the new safety limit.

 ブルーベリーの原産国はポーランドで、明治屋は輸入するä定だったジャム約1千個全てを返品する

The blueberries were grown in Poland. Meiji-ya will return all 1,000 jars that it planned to import.

 輸入食品のセシウムの規制値は3月までは同370ベクレルで、4月から新基準値の100ベクレルが適用された。東ä電力福島第1原発のä故後、370ベクレルを超えた輸入食品はなかった

The safety limit for radioactive cesium for imported food was 370 becquerels/kg until the end of March, but starting April it is 100 becquerels/kg. Since the Fukushima I Nuclear Power Plant accident, there has been no imported food that was found with more than 370 becquerels/kg of radioactive cesium.”

 

(Quelle: EX-SKF.)

Brasilien: Danke Deutschland!

Freitag, Januar 6th, 2012

“Brasiliens “strahlende” Zukunft – Uranbergbau in Caetité

In Caetité, Brasilien operiert die Uranmine des brasilianischen Unternehmens INB. Hier wird der Rohstoff für das brasilianische Atomprogramm produziert. Zwei Atomkraftwerke sind bereits am Netz, das Dritte befindet sich – mit deutscher Unterstützung – im Bau. Weitere AKWs sind in den nächsten Jahren geplant. Doch der Uranabbau hat gravierende Folgen für die Bevölkerung im Umfeld der Mine – die Brunnen der Bevölkerung sind radioaktiv verseucht, viele Menschen erkranken an Krebs. Der Transport der “Yellow Cake” zum Hafen ist gefährlich, die Bevölkerung wird von dem Unternehmen vor den Gefahren des Uranabbaus nicht gewarnt. Pater Osvaldino Barboso will dies ändern und kämpft für die Rechte der Menschen im Umfeld der Mine. Er setzt sich ein für mehr Aufklärung und Transparenz, für sauberes Wasser und den Schutz der Gesundheit der Menschen. Mit Hilfe von Misereor konnte ein Film über die Arbeit von Pater Osvaldino gedreht werden.

 

 

Mehr Infos im MISEREOR-Blog:
http://www.misereor.de/blog/2011/03/31/radioaktive-gefahr-in-verzug/

 

(Quelle: YouTube.com)

Siehe auch:

Violações de Direitos Humanos no Ciclo do Nuclear